Toy Parser Generator
or
How to easily write parsers in Python

Christophe Delord
christophe.delord@free.fr
http://christophe.delord.free.fr/en/tpg/

August 22, 2002

http://christophe.delord.free.fr/en/tpg/

Contents

I Introduction and tutorial 7
1 Introduction 8
1.1 Imtroduction o . oL e 8

1.2 License. o o e e e e e e 8
1.3 Structure of the document o 8

2 Installation 10
2.1 Getting TPG o o e 10
2.2 Requirementso e e e e 10
2.3 TPG for Linux and other Unix like 10
2.4 TPG for M$ Windows 0 e 10
2.5 TPG for other operating systems L oL 10

3 Tutorial 11
3.1 Introduction e e e e e e e 11
3.2 Defining the grammar 11
3.3 Reading the input and returning values 12
3.4 Embeding the parser in a script L oo Lo 13
3.5 Conclusion e e e 16

IT TPG reference 17
4 Usage 18
4.1 Package content 18
4.2 Command line usage L 19

5 Grammar structure 20
5.1 TPG grammar structure oL e 20
5.2 Comments oL e e 21
5.3 OpLions o . e e e e e 21
5.3.1 Magicoption 21

5.3.2 CSLoptions. o . o e 21

5.4 Pythoncode. e 21
541 Syntax . ..o L. e e 21

5.4.2 Indentation L 21

5.5 TPG parsers o i e e 22
5.5.1 Imitialisation Lo 22

5.5.2 Rules e e e 22

5.5.3 Pythoncode 22

CONTENTS

6 Lexer
6.1 Regular expression syntax L Lo e
6.2 Token definition L.
6.2.1 Predefined tokens e
6.2.2 Inline tokens L
6.3 Token matching L
6.3.1 Splitting the input string L o
6.3.2 Matching tokens in grammar ruleso
Parser
7.1 Declaration L e e
7.2 Base classes of TPG parsers o v i i it e e e e
7.2.1 Default base class e
7.2.2 User defined base classes oo
7.3 Grammar ruleso Lo
7.4 Parsing terminal symbolso Lo o
7.5 Parsing non terminal symbols oL oo
7.5.1 Starting the parser L
752 Imarule. . .. oL
7.6 SEqUENCES . . . v v v i e e e e e e e e e e
T.7 Cut .o e e e e
7.8 Alternatives L
7.9 Repetitions e
7.10 Precedence and groupingo o0 e
711 Actions o . e e e
7.11.1 Abstract syntax trees
7.11.2 Text extraction Lo e
T711.3 Object . . . o o o o e
7.11.4 Actions in Pythoncode

Context sensitive lexer

8.1 Introduction e e e e
8.2 Grammar structure
8.3 CSLIeXers. o o e e
8.3.1 Regular expression syntax L L oo
8.3.2 Token definition
8.3.3 Token matching L
8.4 CSL PATSEIS . .« . v v v v v it e e e e e

III Some examples to illustrate TPG

9 Complete interactive calculator

9.1 Introduction e e e e e e
9.2 New functions i e e e e e e e e
9.2.1 Trigonometric and other functions
9.2.2 Memories e e e e e e e e e e e e e e e e
9.3 Source code e e e e e
9.3.1 TPG grammar e

9.3.2 Pythonscript L

23
23
23
23
24
24
24
24

26
26
26
26
26
26
27
27
27
27
27
28
28
28
28
28
29
30
30
31

34
34
34
34
34
34
35
35

37

4 CONTENTS
10 Infix/Prefix/Postfix notation converter 43
10.1 Introduction oL e e 43
10.2 Abstract syntax trees.o 43
10.3 Grammar o oL e e e e e e 43
10.3.1 Infix expressions o i 43

10.3.2 Prefix expressions 44

10.3.3 Postfix expressionso L e 44

10.4 Source codeol e e 44
IV Internal structure of TPG for the curious 47
11 Structure of the package 48
11.1 General structure of the package L. 48

12 Lexer 49
12.1 Token matching L e 49
13 Parser 50
13.1 Interface with the lexer 50
13.2 Sequences of subexpressions e e e e 50
13.3 Alternatives between subexpressions L. 50
13.4 Repetitions oL e 50
14 Code generation 51
14.1 Inheritance Lo 51
14.2 Lexer o o e e e 52
14.3 Parser oL e e e e e e 53
14.3.1 Grammar rules 53

14.3.2 Symbols e 54

14.3.3 Sequenceso e 55

14.3.4 Cut . . oL e 56

14.3.5 Alternatives oL e 57

14.3.6 Repetitions e e e 58

14.3.7 Abstract syntax trees oL 60

14.3.8 Text extraction e e 61

14.3.9 Python objects 61

List of Figures

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9

4.1
4.2
4.3

5.1

6.1
6.2
6.3
6.4

7.1
7.2
7.3
7.4
7.5
7.6
7.7
7.8
7.9
7.10

8.1
8.2
8.3

14.1
14.2
14.3
14.4
14.5
14.6
14.7

Grammar for expressions 11
Terminal symbol definition for expressions 12
Grammar of the expression recognizer 12
make_op functiono oL 13
Token definitions with functions L. 13
Return values for (non) terminal symbols L. 13
Expression recognizer and evaluator o000 14
Python code generation from a grammar 14
Complete Python script with expression parser 15
Grammar embeding exampleo L 18
Parser compilation example L Lo Lo 19
Parser usage example Lo e 19
TPG grammar structure oL L L e 20
Code indentation examples L L 22
Token definition examples Lo 23
Inline token definition examples oo 24
Token usage exampleso e e e e 24
Token usage examples Lo 25
User defined base classes for TPG parsers 26
Rule declaration L 27
Precedence in TPG expressions o v i 28
AST example o L 29
AST update example 29
Backtracking with WrongMatch exampleo oL 32
Backtracking with the check method example 32
Backtracking with the check keyword example 33
Error reporting the error method example 33
Error reporting the error keyword example 0oL 33
Token definition in CSL parsers example 34
Separator definition in CSL parsers examples 35
Token usage in CSL parsers examples o 35
Inheritance example 51
Lexer example e e e e e 52
Rule declaration example L Lo 53
Terminal symbol matching example L oL 54
Non terminal symbol matching example L. 54
Sequence of expressions example L. 55
Cut example e e e e 56

LIST OF FIGURES

14.8 Alternative in expressions example 57
14.9 Repetition examples: builtin 7, *and + L. 58
14.10Repetition examples: user defined {mm} o L 59
14.11AST instanciation example L L 60
14.12AST update example 60
14.13Text extraction o o 0 o e e e e 61

14.14Python object in TPG . .« o o v o v e e e e e e 61

Part 1

Introduction and tutorial

Chapter 1

Introduction

1.1 Introduction

TPG (Toy Parser Generator) is a Python' parser generator. It is aimed at easy usage rather than
performance. My inspiration was drawn from two different sources. The first was GEN6. GENG is
a parser generator created at ENSEEIHT? where I studied. The second was PROLOG?, especially
DCG* parsers. I wanted a generator with a simple and expressive syntax and the generated parser
should work as the user expects. So I decided that TPG should be a recursive descendant parser
(a rule is a procedure that calls other procedures) and the grammars are attributed (attributes are
the parameters of the procedures). This way TPG can be considered as a programming language
or more modestly as Python extension.

1.2 License
TPG is available under the GNU Lesser General Public.

Toy Parser Generator: A Python parser generator
Copyright (C) 2002 Christophe Delord

This library is free software; you can redistribute it and/or modify it under the terms of
the GNU Lesser General Public License as published by the Free Software Foundation;
either version 2.1 of the License, or (at your option) any later version.

This library is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or FIT-
NESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License
for more details.

You should have received a copy of the GNU Lesser General Public License along with
this library; if not, write to the Free Software Foundation, Inc., 59 Temple Place, Suite
330, Boston, MA 02111-1307 USA

1.3 Structure of the document

Part I starts smoothly with a gentle tutorial as an introduction. I think this tutorial may be
sufficent to start with TPG.

1Python is a wonderful object oriented programming language available at http://www.python.org

2ENSEEIHT is a french engineer school (http://www.enseeiht.fr).

SPROLOG is a programming language using logic. My favorite PROLOG compiler is SWI-PROLOG
(http://www.swi-prolog.org).

4Definite Clause Grammars.

http://www.python.org
http://www.enseeiht.fr
http://www.swi-prolog.org

1.3. STRUCTURE OF THE DOCUMENT 9

Part II is a reference documentation. It will detail TPG as much as possible.
Part III gives the reader some examples to illustrate TPG.

Part IV is an explanation of how TPG works internally. It details the predictive algorithm and
shows the generated code. It is not needed to read this part but it can help to understand
how TPG works or why some grammars fail.

Chapter 2

Installation

2.1 Getting TPG

TPG is freely available on its web page (http://christophe.delord.free.fr/en/tpg). It is distributed
as a package using distutils’.
2.2 Requirements

TPG is a pure Python package. It may run on any platform supported by Python. The only re-
quirement of TPG is Python 2.2 or newer. Python can be downloaded at http://www.python.org.

2.3 TPG for Linux and other Unix like

Download TPG-X.Y.Z.tar.gz, unpack and run the installation program:

tar xzf TPG-X.Y.Z.tar.gz
cd TPG-X.Y.Z
python setup.py install

You may need to be logged as root to install TPG.

2.4 TPG for M$ Windows

Download TPG-X.Y.Z.win32.exe and run it.

2.5 TPG for other operating systems

TPG should run on any system provided that Python is installed. You should be able to install
it by running the setup.py script (see 2.3).

Ldistutils is a Python package used to distribute Python softwares

10

http://christophe.delord.free.fr/en/tpg
http://www.python.org

Chapter 3

Tutorial

3.1 Introduction

This short tutorial presents how to make a simple calculator. The calculator will compute basic
mathematical expressions (+, -, *, /) possibly nested in parenthesis. We assume the reader is
familiar with regular expressions.

3.2 Defining the grammar

Expressions are defined with a grammar. For example an expression is a term, a term is a sum of
factors and a factor is a product of atomic expressions. An atomic expression is either a number
or a complete expression in parenthesis.

We describe such grammars with rules. A rule describe the composition of an item of the
language. In our grammar we have 3 items (Term, Factor, Atom). We will call these items
‘symbols’ or ‘non terminal symbols’. The decomposition of a symbol is symbolized with —. The
grammar of this tutorial is given in figure 3.1.

Figure 3.1: Grammar for expressions
’ Grammar rule ‘ Description ‘

Term — Factor (("+'|'=") Factor)x | A term is a factor eventually followed with a
plus ('+’) or a minus ("—’) sign and an other
factor any number of times (is a repetition
of an expression 0 or more times).

Factor — Atom (('+'|'/") Atom)x A factor is an atom eventually followed with a
"«" or '/’ sign and an other atom any number
of times.

Atom — number | (' Term ')’ An atomic expression is either a number or a

term in parenthesis.

We have defined here the grammar rules (i.e. the sentences of the language). We now need
to describe the lexical items (i.e. the words of the language). These words - also called terminal
symbols - are described using regular expressions. In the rules we have written some of these
terminal symbols (4, —, %, /, (,)). We have to define number. For sake of simplicity numbers are
integers composed of digits (the corresponding regular expression can be [0 — 9]4+). To simplify
the grammar and then the Python script we define two terminal symbols to group the operators
(additive and multiplicative operators). We can also define a special symbol that is ignored by

11

12 CHAPTER 3. TUTORIAL

TPG. This symbol is used as a separator. This is generaly usefull for white spaces and comments.
The terminal symbols are given in figure 3.2

Figure 3.2: Terminal symbol definition for expressions
Terminal symbol \ Regular expression \ Comment

number [0 — 9]+ or \d+ One or more digits
add +—] a-+ora—

mul */] a*ora/

spaces \s+ One or more spaces

This is sufficient to define our parser with TPG. The grammar of the expressions in TPG can
be found in figure 3.3.

Figure 3.3: Grammar of the expression recognizer

parser Calc:
separator spaces: ’\s+’ ;
token number: ’\d+’
token add: °’[+-]’ ;
token mul: °’[*/]’ ;
START -> Term ;
Term -> Fact (add Fact)x* ;

Fact -> Atom (mul Atom)* ;

Atom -> number | ’\(’ Term ’\)’ ;

Calc is the name of the Python class generated by TPG. START is a special non terminal
symbol treated as the aziom' of the grammar.

With this small grammar we can only recognize a correct expression. We will see in the next
sections how to read the actual expression and to compute its value.

3.3 Reading the input and returning values

The input of the grammar is a string. To do something useful we need to read this string in order
to transform it into an expected result.

This string can be read by catching the return value of terminal symbols. By default any
terminal symbol returns a string containing the current token. So the token (' always returns
the string '(". For some tokens it may be useful to compute a Python object from the token.
For example number should return an integer instead of a string, add and mul should return a
function corresponding to the operator. That why we will add a function to the token definitions.
So we associate int to number and make_op to add and mul.

int is a Python function converting objects to integers and make_op is a user defined function
(figure 3.4).

To associate a function to a token it must be added after the token definition as in figure 3.5

1The axiom is the symbol from which the parsing starts

3.4. EMBEDING THE PARSER IN A SCRIPT 13

Figure 3.4: make_op function

def make_op(s):

return {
’+’: lambda x,y: xty,
’=’: lambda x,y: x-y,
’x’: lambda x,y: X*y,
’/?: lambda x,y: x/y,
}[s]

Figure 3.5: Token definitions with functions

separator spaces: ’\s+’

token number: ’\d+’ int ;
token add: ’[+-]’ make_op;
token mul: ’[*/]°’ make_op;

We have specified the value returned by the token. To read this value after a terminal symbol
is recognized we will store it in a Python variable. For example to save a number in a variable n
we write number/n. In fact terminal and non terminal symbols can return a value. The syntax
is the same for both sort of symbols. In non terminal symbol definitions the return value defined
at the left hand side is the expression return by the symbol. The return values defined in the
right hand side are just variables to which values are saved. A small example may be easier to
understand (figure 3.6).

Figure 3.6: Return values for (non) terminal symbols

Rule Comment

X/x —> Defines a symbol X. When X is called, z is returned.
Y/y X starts with a Y. The return value of Y is saved in y.
Z/z The return value of 7 is saved in z.

{{ x = y+z }} | Computes .

; Returns z.

In the example described in this tutorial the computation of a Term is made by applying the
operator to the factors, this value is then returned :

Term/t -> Fact/t (add/op Fact/f {{ t = op(t,f) }})* ;

This example shows how to include Python code in a rule. Here {{...}} is copied verbatim
in the generated parser.
Finally the complete parser is given in figure 3.7.

3.4 Embeding the parser in a script

To embed a TPG parser in a Python program, you only need the tpg.compile function. This
function takes a grammar (in a string®) and returns a string containing the Python code for the

2It may be a good pratice to use only raw strings. This will ease the pain of writing regular expressions.

14 CHAPTER 3. TUTORIAL

Figure 3.7: Expression recognizer and evaluator

parser Calc:
separator spaces: ’\s+’ ;
token number: ’\d+’ int ;
token add: ’[+-]’ make_op ;
token mul: ’[*/]’ make_op ;
START -> Term ;
Term/t -> Fact/t (add/op Fact/f {{ t = op(t,f) }})* ;

Fact/f -> Atom/f (mul Atom/a {{ f = op(f,a) }})* ;

Atom/a -> number/a | ’\(’ Term/a ’\)’ ;

parser. One way to use this parser is to exec its definition. A practical way to build parsers is to
exec the result of tpg.compile (figure 3.8).

Figure 3.8: Python code generation from a grammar
import tpg
exec(tpg.compile(r""" # Your grammar here """))

You can instanciate your parser here

To use this parser you now just need to import tpg, compile the grammar and instanciate an
object of the class Calc as in figure 3.9.

3.4. EMBEDING THE PARSER IN A SCRIPT

15

import tpg

return {
)+):

7*}:
7/7:
} sl

parser Calc:

llllll))

calc = Calc()

token number:
token add: ’[+-]’ make_op ;
token mul: ’[*/]’ make_op ;

Figure 3.9: Complete Python script with expression parser

def make_op(s):

lambda

: lambda

lambda
lambda

exec(tpg.compile(r"""

separator spaces:

y! X+y,
y: X-y,
y: X*y,
y: x/y,

)\S+)

’\d+’ int ;

START/e -> Term/e ;

Term/t -> Fact/t (add/op Fact/f {{ t
Fact/f -> Atom/f (mul/op Atom/a {{ £
Atom/a -> number/a | ’\(° Term/a ’\)’

expr = raw_input(’Enter an expression: ’)
print expr, ’=’, calc(expr)

op(t,f) }})* ;
op(f,a) }})* ;

16 CHAPTER 3. TUTORIAL

3.5 Conclusion

This tutorial shows some of the possibilities of TPG. If you have read it carefully you may be able
to start with TPG. The next chapters present TPG more precisely. They contain more examples
to illustrate all the features of TPG.

Happy TPG’ing!

Part 11

TPG reference

17

Chapter 4

Usage

4.1 Package content

TPG is a package which main function is to take a grammar and return a parser'. You only need
to import TPG and use these four objects:

tpg.compile(grammar): This function takes a grammar in a string and produces a parser in
Python (also in a string). You can call exec to actually build it.

tpg.LexerError: This exception is raised when the lexer fails.
tpg.ParserError: This exception is raised when the parser fails.

tpg.SemanticError: This exception is raised by the grammar itself when some semantic prop-
erties fail.

The grammar must be in a string (see figure 4.1).

Figure 4.1: Grammar embeding example
my_grammar = r"""
parser Foo:

START/x -> Bar/x .

Bar/x -> ’bar’/x .

The tpg.compile function produces Python code from the grammar (see figure 4.2).
Then you can use the new generated parser. The parser is now simply a Python class (see
figure 4.3).

IMore precisely it returns the Python source code of the parser

18

4.2. COMMAND LINE USAGE 19

Figure 4.2: Parser compilation example

exec(tpg.compile (my_grammar)) # Compiles my_grammar

Figure 4.3: Parser usage example

test = "bar"
my_parser = Foo()

x = my_parser(test) # Uses the START symbol
print x

x = my_parser.parse(’Bar’, test) # Uses the Bar symbol
print x

4.2 Command line usage

The tpg script is just a wrapper for the package. It reads a grammar in a file and write the
generated code in a Python script. To produce a Python script from a grammar you can use tpg
as follow:

tpg [-v|-vv] grammar.g [-o parser.py]
tpg accepts some options on the command line:

-v turns ¢pg into a verbose mode (it displays parser names).
-vv turns {pg into a more verbose mode (it displays parser names and simplified rules).

-o file.py tells tpg to generate the parser in file.py. The default output file is grammar.py if -o
option is not provided and grammar.g is the name of the grammar.

Chapter 5

Grammar structure

5.1 TPG grammar structure

TPG grammars may contain three parts:

Options are defined at the beginning of the grammar (see 5.3).

Parsers are described in sections starting with the parser keyword (see 5.5).

Python codes can appear in sections starting with the main keyword or before the first parser
(see 5.4).

See figure 5.1 for a generic TPG grammar.

Figure 5.1: TPG grammar structure

Options
set magic = "/usr/bin/env python"

Python code
{H
class MyClass:
pass

3}

Parser Foo
parser Foo:

START -> X Y Z ;

More Python code
main:
H
def myfunction:
pass

1

20

5.2. COMMENTS 21

5.2 Comments

Comments in TPG start with # and run until the end of the line.

This is a comment

5.3 Options

Some options can be set at the beginning of TPG grammars. The syntax for options is:
set name sets the boolean name option to true.
set name = ”wvalue” sets the name option to value.

set noname disables the name option.

5.3.1 Magic option

The magic option tells TPG which interpreter is called when the script is run. The first line of
the generated code will start with #! and contains the command line to execute the appropriate
interpreter (/usr/bin/env python for example). This has no effect on M$ Windows.

set magic = ” /usr/bin/env python” adds #!/usr/bin/env python to the first line.

set nomagic generates no magic line. This is the default behaviour.

5.3.2 CSL options

By default TPG lexers are context free. The CSL option tells TPG to generate a context sensitive
lexer (see 8).

set CSL generates context sensitive lexers.

set noCSL generates context free lexers. This is the default behaviour.

5.4 Python code

Python code section are not handled by TPG. TPG won’t complain about syntax errors in Python
code sections, it is Python’s job. They are copied verbatim to the generated Python parser.

5.4.1 Syntax

Python code is enclosed in double curly brackets. That means that Python code must not contain
to consecutive close brackets. You can avoid this by writting } } (with a space) instead of }}
(without space).

5.4.2 Indentation

Python code can appear in several parts of a grammar. Since indentation has a special meaning
in Python it is important to know how TPG handles spaces and tabulations at the beginning of
the lines. In TPG indentation is important only in Python code sections (in main parts, in parser
parts and in rules).

When TPG encounters some Python code it removes in all non blank lines the spaces and
tabulations that are common to every lines. TPG considers spaces and tabulations as the same
character so it is important to always use the same indentation style. Thus it is advised not to
mix spaces and tabulations in indentation. Then this code will be reindented when generated
according to its location (in a class, in a method or in global space).

The figure 5.2 shows how TPG handles indentation.

22

CHAPTER 5. GRAMMAR STRUCTURE

Figure 5.2: Code indentation examples

Code in grammars

\ Generated code

|

Comment

|

Loouifyl==2:
LuuuuuLUpTrint e

uuuuelse :

LuuLuuuuprint " OK"

1

if 1==2:
Luuuprinteee
else:
uuuuprint,"OK"

Correct: these lines have
four spaces in common.
These spaces are removed.

WRONG: it’s a bad idea
to start a multiline code

Huuiful==2: Hotm=2 ti the first li
. . section on the first line
uuuuuuuuprlntu"???" I_II_I_II_H_II_IPI‘:I-n-t_l"???'I . .
. since the common inden-
l_”_”_”_,else: |_||_|else.

uuuuuuuuprintuHOK"

1

uuuuuuprint,"OK"

tation may be different
from what you expect. No
error will be raised by
TPG but Python won’t
compile this code.

{H{uuuuuuuprint "OK" 3}

print,"0OK"

Correct: indentation does
not matter in a one line
Python code.

5.5 TPG parsers

A grammar can contain as many parsers as needed. A parser declaration starts with the parser
keyword and contains rules and Python code sections (local to the parser).

5.5.1 Initialisation

The initialisation of Python objects is made by the __init__ method. This method is generated by
TPG and cannot be overriden. To resolve this problem an init method (i.e. without the double
underscores) is called at initialization time with the arguments given to __init__. See 5.5.3 to add
methods to a parser.

5.5.2 Rules

Each rule will be translated into a method of the parser.

5.5.3 Python code

Python code that is local to a parser will be copied in the generated class. This is usually used to
add methods or attributes to the parser.

Chapter 6

Lexer

6.1 Regular expression syntax

The lexer is based on the re! module. TPG profits from the power of Python regular expressions.
This document assumes the reader is familiar with regular expressions.

You can use the syntax of regular expressions as expected by the re module except from the
grouping syntax since it is used by TPG to decide which token is recognized.

6.2 Token definition

6.2.1 Predefined tokens

Tokens can be explicitely defined by the token and separator keywords.
A token is defined by:

a name which identifies the token. This name is used by the parser.
a regular expression which describes what to match to recognize the token.

an action which can translate the matched text into a Python object. It can be a function of
one argument or a non callable object. It it is not callable, it will be returned for each token
otherwise it will be applied to the text of the token and the result will be returned. This
action is optional. By default the token text is returned.

Token definitions end with a ; .
See figure 6.1 for examples.

Figure 6.1: Token definition examples

name reg. exp action

token integer: ’\d+’ int;

token ident : ’[a-zA-Z]\wx’ ;

separator spaces : ’\s+’; # white spaces
separator comments: ’#.x’; # comments

Lre is a standard Python module. It handles regular expressions. For further information about re you can read

http://python.org/doc/2.2/1ib/module-re.html

23

http://python.org/doc/2.2/lib/module-re.html

24 CHAPTER 6. LEXER

The order of the declaration of the tokens is important. The first token that is matched is
returned. The regular expression has a special treatment. If it describes a keyword, TPG also
looks for a word boundary after the keyword. If you try to match the keywords if and ifryz TPG
will internally search if\b and ifxyz\b. This way, if won’t match ifryz and won’t interfere with
general identifiers (\w+ for example).

There are two kinds of tokens. Tokens defined by the token keyword are parsed by the parser
and tokens defined by the separator keyword are considered as separators (white spaces or com-
ments for example) and are wiped out by the lexer.

6.2.2 Inline tokens

Tokens can also be defined on the fly. Their definition are then inlined in the grammar rules. This
feature may be useful for keywords or punctuation signs. Inline tokens can not be transformed by
an action as predefined tokens. They always return the token in a string.

See figure 6.2 for examples.

Figure 6.2: Inline token definition examples

IfThenElse ->
’if’ Cond
’then’ Statement
’else’ Statement

>

Inline tokens have a higher precedence than predefined tokens to avoid conflicts (an inlined 4f
won’t be matched as a predefined identifier).

6.3 Token matching

TPG works in two stages. The lexer first splits the input string into a list of tokens and then the
parser parses this list.

6.3.1 Splitting the input string

The lexer split the input string according to the token definitions (see 6.2). When the input string
can not be matched a tpg. LexerError exception is raised.

The lexer may loop indefinitely if a token can match an empty string since empty strings are
everywhere.

6.3.2 Matching tokens in grammar rules

Tokens are matched as symbols are recognized. Predefined tokens have the same syntax than non
terminal symbols. The token text (or the result of the function associated to the token) can be
saved by the infix / operator (see figure 6.3).

Figure 6.3: Token usage examples

S -> ident/i;

6.3. TOKEN MATCHING 25

Inline tokens have a similar syntax. You just write the regular expression (in a string). Its
text can also be save (see figure 6.4).

Figure 6.4: Token usage examples

S -> ;(: ’\W+’/i));;

Chapter 7

Parser

7.1 Declaration

A parser is declared with the parser keyword. The declaration may have a list of base classes from
which the parser will inherit. Then follows grammar rules and code sections.

7.2 Base classes of TPG parsers

TPG parsers can inherit from other Python classes.

7.2.1 Default base class

TPG parsers always inherits from the tpg.base. ToyParser class which defines the common be-
haviour of every parsers.

7.2.2 User defined base classes

The user can add more base classes to TPG parsers by adding a class list to the parser definition
as in figure 7.1.

Figure 7.1: User defined base classes for TPG parsers

parser MyParser (BaseClassl, BaseClass2):

7.3 Grammar rules

Rule declarations have two parts. The left side declares the symbol associated to the rule, its
attributes and its return value. The right side describes the decomposition of the rule. Both parts
of the declaration are separated with an arrow (—) and the declaration ends with a ;.

The symbol defined by the rule as well as the symbols that appear in the rule can have attributes
and return values. The attribute list - if any - is given as an object list enclosed in left and right
angles. The return value - if any - is extracted by the infix / operator. See figure 7.2 for example.

26

7.4. PARSING TERMINAL SYMBOLS 27

Figure 7.2: Rule declaration

SYMBOL <attl, att2, att3> / return_expression_of_SYMBOL ->
A <x, y> / ret_value_of_A

B <y, z> / ret_value_of_B

7.4 Parsing terminal symbols

Each time a terminal symbol is encountered in a rule, the parser compares it to the current token
in the token list. If it is different the parser backtracks.

7.5 Parsing non terminal symbols

7.5.1 Starting the parser

You can start the parser from the axiom or from any other non terminal symbol. When the parser
can not parse the whole token list a tpg. ParserError is raised. The value returned by the parser
is the return value of the parsed symbol.

From the axiom

The axiom is a special non terminal symbol named START. Parsers are callable objects. When
an instance of a parser is called, the START rule is parsed. The first argument of the call is the
string to parse. The other arguments of the call are given to the START symbol.

This allows to simply write x=calc("1+1") to parse and compute an expression if calc is an
instance of an expression parser.

From another non terminal symbol

It’s also possible to start parsing from any other non terminal symbol. TPG parsers have a method
named parse. The first argument is the name of the symbol to start from. The second argument
is the string to parse. The other arguments are given to the specified symbol.

For example to start parsing a Factor you can write:

f=calc.parse(’Factor’, "2*3")

7.5.2 In arule

To parse a non terminal symbol in a rule, TPG call the rule corresponding to the symbol.

7.6 Sequences

Sequences in grammar rules describe in which order symbols should appear in the input string.
For example the sequence A B recognizes an A followed by a B. Sequences can be empty.
For example to say that a sum is a term plus another term you can write:

Sum -> Term ’+’ Term ;

28 CHAPTER 7. PARSER

7.7 Cut

The cut idiom is drawn from the Prolog cut (/). When the / operator is encountered it is ignored.
When TPG backtracks on a cut, a syntax error is raised so as to cut other possible alternatives.
For example, theruleR -> a ! b ¢ | d ; will raise a ParserError exception if it recognizes
an a not followed by a b and a ¢, without trying to parse a d.
The cut also helps TPG to report errors. In the previous example, TPG will report an error
after a instead of backtracking to the topmost rule.

7.8 Alternatives

Alternatives in grammar rules describe several possible decompositions of a symbol. The infix
pipe operator (]) is used to separate alternatives. A | B recognizes either an A or a B. If both
A and B can be matched only the first match is considered. So the order of alternatives is very
important. If an alternative has an empty choice, it must be the last.

For example to say that an atom is an integer or an expression in paranthesis you can write:

Atom -> integer | ’\(° Expr ’\)’

7.9 Repetitions

Repetitions in grammar rules describe how many times an expression should be matched.

A? recognizes zero or one A.
A* recognizes zero or more A.
A+ recognizes one or more A.

A{m,n} recognizes at least m and at most n A.

Repetitions are greedy. Repetitions are translated into Python loops. Thus whatever the
length of the repetitions, Python stack will not overflow.

7.10 Precedence and grouping

The figure 7.3 lists the different structures in increasing precedence order. To override the default
precedence you can group expressions with parenthesis.

Figure 7.3: Precedence in TPG expressions

’ Structure \ Example
Alternative A | B
Cut A!B
Sequence AB
Repetitions A7, Ax, A+
Symbol and grouping | A and (...)

7.11 Actions

Grammar rules can contain actions and Python code. Actions are handled by TPG and Python
code is copied verbatim into the generated code.

7.11. ACTIONS 29

7.11.1 Abstract syntax trees

An abstract syntax tree (AST) is an abstract representation of the structure of the input. A node
of an AST is a Python object (there is no constraint about its class). AST nodes are completely
defined by the user.

The figure 7.4 shows a node symbolizing a couple.

Figure 7.4: AST example

{{
class Couple:
def __init__(self, a, b):
self.a = a
self.b = b

3}
parser Foo:
COUPLE -> ’(°> ITEM/a ’,’ ITEM/b ’)’ c = Couple<a,b> ;

COUPLE/Couple<a,b> -> > (> ITEM/a ’,’ ITEM/b ’)’

Creating an AST
AST can be created by the infix = operator (see figure 7.11.1).

Updating an AST

When parsing lists for example it is useful to save all the items of the list. The infix - operator
call the add method of an AST (see figure 7.5). This method is defined by the user. TPG won’t
check that the class actually has an add method.

Figure 7.5: AST update example

it
class List(list):
add = list.append

3}

parser ListParser:

LIST/1 ->
)(7
1 = List<>
ITEM/a 1-a

(’,” ITEM/a 1-a)*
J))

>

30 CHAPTER 7. PARSER

7.11.2 Text extraction

TPG can extract a portion of the input string. The idea is to put marks while parsing and then
extract the text between the two marks. This extracts the whole text between the marks, including
the tokens defined as separators.

7.11.3 Object

TPG knows some basics about Python objects. An object in TPG is a Python object using

a special syntax. The use of parenthesis has been rejected because it would have introduced

ambiguities in the TPG grammar. Parenthesis have been replaced with left and right angles (<

and >). Appart from this particularity, TPG object syntax is a subset of the Python syntax.
An object can be:

e an identifier

a string

a tuple

a code object (in double curly brackets)

a text extraction (infix .. operator)

an acces to an attribute (infix . operator)
e a call to a method or a function

e a slice operation

Identifier

No mystery about identifiers except that TPG identifier definition includes true identifiers and
integers.

I_m_an_Identifier_13
1975

String

A TPG string is a subset of Python strings. TPG doesn’t accept triple quoted strings. If you
absolutely need triple quoted strings you can encapsulate them in Python code objects.

"I’m a string"
’I\’m a string too"

Argument lists and tuples

Argument list is a comma separated list of objects. Remember that arguments are enclosed in left
and right angles.

<objectl, object2, object3>

Argument lists and tuples have the same syntax except from the possibility to have default
arguments, argument lists and argument dictionnaries as arguments as in Python.

RULE<argl, arg2=18, arg3=None, *other_args, **keywords> -> ;

7.11. ACTIONS 31

Python code object

A Python code object is a piece of Python code in double curly brackets. Python code used in an
object expression must have only one line.

{{ dict([(x,x**2) for x in range(100)]) # Python embeded in TPG }}

Text extraction

Text extraction is done by the infix .. operator. Marks can be put in the input string by the prefix
@ operator.

@beginning

Cend

I;lér;string = beginning .. end
Acces to an attribute

Exactly as in Python.

my_object.my_attribute

Call to a method or a function
Exactly as in Python except from the use of left and right angle instead of parenthesis.

my_object.my_method<argl, arg2>
my_function<argl, arg2>
my_function_without_arg<>

Slice extraction
As in Python.

my_list[object]
my_list[objectl:object2]
my_list[:object2]
my_list[objectl:]
my_list[:]

7.11.4 Actions in Python code

TPG parsers also have some interesting methods that can be used in Python code.

Getting the line number of a token

The lineno method returns the line number of the current token. If the first parameter is a mark
(see 7.11.2) the method returns the line number of the token following the mark.

Backtracking

The user can force the parser to backtrack in rule actions. The parser classes have a WrongMatch
method for that purpose (see figure 7.6).

Parsers have another useful method named check (see figure 7.7). This method checks a
condition. If this condition is false then WrongMatch if called in order to backtrack.

A shortcut for the check method is the check keyword followed by the condition to check (see
figure 7.8).

32 CHAPTER 7. PARSER

Figure 7.6: Backtracking with WrongMatch example

NATURAL matches integers greater than O
NATURAL/n ->

number/n

{{ if n<1: self.WrongMatch() }}

>

Figure 7.7: Backtracking with the check method example

NATURAL matches integers greater than 0O
NATURAL/n ->

number/n

{{ self.check(n>=1) }}

>

Error reporting

The user can force the parser to stop and raise an exception. The parser classes have a error
method for that purpose (see figure 7.9). This method raises a SemanticError.

A shortcut for the error method is the error keyword followed by the object to give to the
SemanticError exception (see figure 7.10).

7.11. ACTIONS 33

Figure 7.8: Backtracking with the check keyword example

NATURAL matches integers greater than O
NATURAL/n ->

number/n

check {{ n>=1 }}

>

Figure 7.9: Error reporting the error method example

FRACT parses fractions
FRACT/<n,d> ->
number/n ’/’ number/d
{{ if d==0: self.error("Division by zero") }}

>

Figure 7.10: Error reporting the error keyword example

FRACT parses fractions
FRACT/<n,d> —>
number/n ’/’ number/d
(check d | error "Division by zero")

>

Chapter 8

Context sensitive lexer

8.1 Introduction

Before the version 2 of TPG, lexers were context sensitive. That means that the parser commands
the lexer to match some tokens, i.e. different tokens can be matched in a same input string
according to the grammar rules being used. These lexers were very flexible but slower than
context free lexers because TPG backtracking caused tokens to be matched several times.

In TPG 2, the lexer is called before the parser and produces a list of tokens from the input
string. This list is then given to the parser. In this case when TPG backtracks the token list
remains unchanged.

Since TPG 2.1.2, context sensitive lexers have been reintroduced in TPG. By default lexers
are context free but the CSL option (see 5.3.2) turns TPG into a context sensitive lexer.

8.2 Grammar structure

CSL grammar have the same structure than non CSL grammars (see 5.1) except from the CSL
option (see 5.3.2).

8.3 CSL lexers

8.3.1 Regular expression syntax

The CSL lexer is based on the re module. The difference with non CSL lexers is that the given
regular expression is compiled as this, without any encapsulation. Grouping is then possible and
usable.

8.3.2 Token definition

In CSL lexers there is no predefined tokens. Tokens are always inlined and there is no precedance
issue since tokens are matched while parsing, when encountered in a grammar rule.

A token definition can be simulated by defining a rule to match a particular token (see fig-
ure 8.1).

Figure 8.1: Token definition in CSL parsers example

number/int<n> -> ’\d+’/n ;

34

8.4. CSL PARSERS 35

In non CSL parsers there are two kinds of tokens: true tokens and token separators. To declare
separators in CSL parsers you must use the special separator rule. This rule is implicitly used
before matching a token. It is thus necessary to distinguish lexical rules from grammar rules.
Lexical rule declarations start with the lex keyword. In such rules, the separator rule is not called
to avoid infinite recursion (separator calling separator calling separator ...). The figure 8.2 shows
a separator declaration with nested C++ like comments.

Figure 8.2: Separator definition in CSL parsers examples
lex separator -> spaces | comment ;
lex spaces —> ’\s+’ ;

lex comment -> ’/*’ in_comment* ’\x*x/’ ; # C++ nested comments
lex in_comment -> comment | ’*[~/]1|[~*]’ ;

8.3.3 Token matching

In CSL parsers, tokens are matched as in non CSL parsers (see 6.3). There is a special feature in
CSL parsers. The user can benefit from the grouping possibilities of CSL parsers. The text of the
token can be saved with the infix / operator. The groups of the token can also be saved with the
infix // operator. This operator (available only in CSL parsers) returns all the groups in a tuple.
For example, the figure 8.3 shows how to read entire tokens and to split tokens.

Figure 8.3: Token usage in CSL parsers examples
lex identifier/i -> ’\w+’/s ; # a single identifier
lex string/s -> "> (["\’]1*)°"//<s> ; # a string without the quotes

lex item/<key,val> -> "(\w+)=(.*)"//<key,val> ; # a tuple (key, value)

8.4 CSL parsers

There is no difference between CSL and non CSL parsers except from lexical rules which look like
grammar rules’.

n fact lexical rules and grammar rule are translated into Python in a very similar way

36

CHAPTER 8. CONTEXT SENSITIVE LEXER

Part 111

Some examples to illustrate TPG

37

Chapter 9

Complete interactive calculator

9.1 Introduction

This chapter presents an extention of the calculator described in the tutorial (see 3). This calcu-
lator has more functions and a memory.

9.2 New functions

9.2.1 Trigonometric and other functions

This calculator can compute some numerical functions (sin, cos, sqrt, ...). The make_op function
(see figure 3.4) has been extended to return these functions. Tokens must also be defined to
scan function names. funct! defines the name of unaries functions and funct2 defines the name
of binaries functions. Finally the grammar rule of the atoms has been added a branch to parse
functions. The Function non terminal symbol parser unaries and binaries functions.

9.2.2 Memories

The calculator has memories. A memory cell is identified by a name. For example, if the user
types pi = 4 % atan(1), the memory cell named pi will contain the value of © and cos(pi) will
return —1.

To display the content of the whole memory, the user can type vars.

The variables are saved in a dictionnary. In fact the parser itself is a dictionnary (the parser
inherits from the dict class).

The START symbol parses a variable creation or a single expression and the Atom parses
variable names (the Var symbol parses a variable name and returns its value).

9.3 Source code

9.3.1 TPG grammar

The calculator source code can be a grammar for TPG. Le. the calc.g file is translated into a
calc.py script by TPG. Just type in:

tpg calc.g

Here is the complete source code (calc.g):

set magic = "/usr/bin/env python"

38

9.3. SOURCE CODE

a8

import math
import operator
import string

1}

parser Calc(dict):

{

def mem(self):

vars = self.items()

vars.sort ()

memory = ["Y%s = %s"/(var, val) for (var, val) in vars]
return "\n\t" + "\n\t".join(memory)

def make_op(self, op):

}}

return {

'+ : operator.add,
= : operator.sub,
Tk : operator.mul,
A : operator.div,
%’ : operator.mod,
2 : lambda x,y:x*x*y,
’x%’ : lambda x,y:x**y,
’cos’ : math.cos,

’sin’ : math.sin,

’tan’ : math.tan,

’acos’: math.acos,
’asin’: math.asin,
’atan’: math.atan,

’sqr’ : lambda x:x*x,
’sqrt’: math.sqrt,
’abs’ : abs,

’norm’: lambda x,y:math.sqrt(x*x+y*y),

} [op]

separator space: ’\s+’ ;

token
token
token
token
token
token
token
token

pow_op: ’\"|**’ self.make_op ;

add_op: ’[+-]’ self.make_op ;

mul_op: ’[*/%]’ self.make_op ;

functl: ’(cosl|sin|tan|acos|asin|atan|sqr|sqrt|abs)\b’ self.make_op ;
funct2: ’(norm)\b’ self.make_op ;

real: °>(\d+\.\d*|\d*\.\d+) ([eE] [-+]?\d+)?|\d+[eE] [-+]?\d+’ string.atof ;
integer: ’\d+’ string.atol ;

VarId: °’[a-zA-Z_]\wx’ ;

START/e ->

’vars’ e=self.mem<>
VarId/v ’=’ Expr/e self[v]=e
Expr/e

39

40 CHAPTER 9. COMPLETE INTERACTIVE CALCULATOR

Var/self .get<v,0> -> VarId/v ;
Expr/e -> Term/e (add_op/op Term/t e=op<e,t>)* ;
Term/t -> Fact/t (mul_op/op Fact/f t=op<t,f>)* ;

Fact/f ->
add_op/op Fact/f f=op<0,f>
| Pow/f

Pow/f -> Atom/f (pow_op/op Fact/e f=op<f,e>)7 ;

Atom/a ->
real/a
| integer/a
| Function/a
| Var/a
| >\ (> Expr/a ’\)’

>

Function/y ->
functl/f >\ Expr/x ’\)’ y = f<x>
| funct2/f ’\(’ Expr/x1 ’,’ Expr/x2 ’\)’ y = f<x1,x2>

5
main:

{{
print "Calc (TPG example)"

calc = Calc()

while 1:
1 = raw_input("\n:")
if 1:
try:

print calc(l)
except Exception, e:
print e
else:
break
3}

9.3.2 Python script

The calculator can be directly embeded in a Python script. The grammar is in a string and
compiled using the ¢tpg module.
Here is the complete source code (calc2.py):

#!/usr/bin/env python

import math
import operator
import string
import tpg

9.3. SOURCE CODE

def make_op(op):

return {

7+ : operator.add,
7= : operator.sub,
7% : operator.mul,
1/ : operator.div,
% : operator.mod,
T : lambda x,y:x*x*y,
’**x’ : lambda x,y:x**y,
’cos’ : math.cos,

’sin’ : math.sin,

’tan’ : math.tan,

’acos’: math.acos,
’asin’: math.asin,
’atan’: math.atan,

’sqr’ : lambda x:x*x,

’sqrt’: math.sqrt,

’abs’ : abs,

‘norm’: lambda x,y:math.sqrt (xkx+y*y),
} [op]

exec(tpg.compile(r"""

parser Calc(dict):

{
def mem(self):
vars = self.items()
vars.sort ()
memory = ["%s = %s"/(var, val) for (var, val) in vars]
return "\n\t" + "\n\t".join(memory)
i3

separator space: ’\s+’

token pow_op: ’\7|**’ make_op ;

token add_op: ’[+-]’ make_op ;

token mul_op: ’[*/%]’ make_op ;

token functl: ’(cos|sin|tan|acos|asin|atan|sqr|sqrt|abs)\b’ make_op ;

token funct2: ’(norm)\b’ make_op ;

token real: ’>(\d+\.\dx|\d*\.\d+) ([eE] [-+]7?\d+)?|\d+[eE] [-+]7\d+’ string.atof ;
token integer: ’\d+’ string.atol ;

token VarId: ’[a-zA-Z_]\wx*’

START/e ->
’vars’ e=self.mem<>
| VarId/v ’=’ Expr/e self[v]=e
| Expr/e

Var/self.get<v,0> -> VarId/v ;

Expr/e -> Term/e (add_op/op Term/t e=op<e,t>)* ;

42 CHAPTER 9. COMPLETE INTERACTIVE CALCULATOR

Term/t -> Fact/t (mul_op/op Fact/f t=op<t,f>)* ;

Fact/f ->
add_op/op Fact/f f=op<0,f>
| Pow/f

Pow/f -> Atom/f (pow_op/op Fact/e f=op<f,e>)7 ;

Atom/a ->
real/a
| integer/a
| Function/a
| Var/a
| ’\(’ Expr/a ’\)’

>

Function/y ->
funct1l/f >\ Expr/x ’\)’ y = f<x>
| funct2/f ’\(’ Expr/xl1 ’,’ Expr/x2 ’\)’ y = £<x1,x2>

|Il|l|))

print "Calc (TPG example)"
calc = CalcQ)

while 1:
1 = raw_input("\n:")
if 1:
try:

print calc(l)
except Exception, e:
print e
else:
break

Chapter 10

Infix /Prefix /Postfix notation
converter

10.1 Introduction

In the previous example, the parser computes the value of the expression on the fly, while parsing.
It is also possible to build an abstract syntax tree to store an abstract representation of the input.
This may be usefull when several passes are necessary.

This example shows how to parse an expression (infix, prefix or postfix) and convert it in infix,
prefix and postfix notation. The expression is saved in a tree. Each node of the tree correspond
to an operator in the expression. Each leave is a number. Then to write the expression in infix,
prefix or postfix notation, we just need to walk throught the tree in a particular order.

10.2 Abstract syntax trees

The AST of this converter has two types of node:
class Op is used to store operators (+, -, *, /, ~). It has two sons associated to the sub expressions.
class Atom is an atomic expression (a number or a symbolic name).

Both classes are instanciated by the __init__ method. The infiz, prefix and postfic methods
return strings containing the representation of the node in infix, prefiz and postfix notation.
10.3 Grammar

10.3.1 Infix expressions

The grammar for infix expressions is similar to the grammar used in the previous example.

EXPR/e -> TERM/e (’[+-]’/op TERM/t e=0p<op,e,t,1>)* ;
TERM/t -> FACT/t (’[*/]’/op FACT/f t=0p<op,t,f,2>)* ;
FACT/f -> ATOM/f (’\"’/op FACT/e £=Op<op,f,e,3>)? ;

ATOM/a -> ident/s a=Atom<s> | ’\(’ EXPR/a ’\)’ ;

43

44 CHAPTER 10. INFIX/PREFIX/POSTFIX NOTATION CONVERTER

10.3.2 Prefix expressions

The grammar for prefix expressions is very simple. A compound prefix expression is an operator
followed by two subexpressions.

EXPR_PRE/e —>
ident/s e=Atom<s>
| >’\ (> EXPR_PRE/e ’\)’
| 0P/<op,prec> EXPR_PRE/a EXPR_PRE/b e=0p<op,a,b,prec>

)

0P/<op,prec> ->

> [+-]°/op prec=1
| >[*/]1’/op prec=2
| ’\"?/op prec=3

)

10.3.3 Postfix expressions

At first sight postfix and infix grammars may be very similar. Only the position of the operators
changes. So a compound postfix expression is a first expression followed by a second and an
operator. This rule is left recursive. As TPG is a descendant recursive parser, such rules are
forbidden to avoid infinite recursion. To remove the left recursion a classical solution is to rewrite
the grammar like this:

EXPR_POST/e -> ATOM_POST/a SEXPR_POST<a>/e ;

ATOM_P0OST/a —>
ident/s a=Atom<s>
| >\ (’ EXPR_POST/a ’\)’

)

SEXPR_P0ST<e>/e ->
EXPR_POST/e2 OP/<op,prec> SEXPR_POST<0Op<op,e,e2,prec>>/e
L

The parser first searches for an atomic expression and then builds the AST by passing partial
expressions by the attributes of the SEXPR_POST symbol.

10.4 Source code

Here is the complete source code (notation.py):
#!/usr/bin/env python

Infix/prefix/postfix expression conversion
import tpg

class Op:
""" Binary operator
def __init__(self, op, a, b, prec):
self.op = op # operator ("+", "=", Mkt ow/wonesw)
self.prec = prec # precedence of the operator
self.a, self.b = a, b # operands

10.4. SOURCE CODE

def infix(self):
a = self.a.infix()
if self.a.prec < self.prec: a = "(¥%s)"%a
b = self.b.infix()
if self.b.prec <= self.prec: b = "(¥s)"%b
return "Ys Y%s %s"%(a, self.op, b)
def prefix(self):
a = self.a.prefix()
b = self.b.prefix()
return "Ys %s %s"%(self.op, a, b)
def postfix(self):
a = self.a.postfix()
b = self.b.postfix()
return "Ys %s %s"%(a, b, self.op)

class Atom:
""" Atomic expression """
def __init__(self, s):
self.a = s
self.prec = 99
def infix(self): return self.a
def prefix(self): return self.a

def postfix(self): return self.a
exec(tpg.compile(r"""
Grammar for arithmetic expressions
parser ExpressionParser:

separator space: ’\s+’;
token ident: ’\w+’;

START/<e,t> —>

EXPR/e t=’infix’ ’\n’
| EXPR_PRE/e t=’prefix’ ’\n’
| EXPR_POST/e t=’postfix’ ’\n’

5
Infix expressions

EXPR/e -> TERM/e (’[+-1’/op TERM/t e=Op<op,e,t,1>)* ;
TERM/t -> FACT/t (’[*/]’/op FACT/f t=0p<op,t,f,2>)* ;
FACT/f -> ATOM/f (’\"’/op FACT/e f=0p<op,f,e,3>)7 ;

ATOM/a -> ident/s a=Atom<s> | ’\(’> EXPR/a ’\)’
Prefix expressions
EXPR_PRE/e —>

ident/s e=Atom<s>

| >’\ (> EXPR_PRE/e ’\)’
| 0P/<op,prec> EXPR_PRE/a EXPR_PRE/b e=0p<op,a,b,prec>

45

46 CHAPTER 10. INFIX/PREFIX/POSTFIX NOTATION CONVERTER

Postfix expressions
EXPR_POST/e -> ATOM_POST/a SEXPR_P0ST<a>/e ;

ATOM_P0OST/a —>
ident/s a=Atom<s>
| >\ (’ EXPR_POST/a ’\)’

)

SEXPR_P0ST<e>/e ->
EXPR_POST/e2 0P/<op,prec> SEXPR_POST<Op<op,e,e2,prec>>/e
L

0P/<op,prec> ->
>[+-]°/op prec=1

| >[*/]°/op prec=2

| ’\"’/op prec=3

>

")
parser = ExpressionParser()
while 1:

e = raw_input(":")

if e == "": break

try:

expr, t = parser(e+"\n")
except (tpg.LexicalError, tpg.SyntaxError), e:

print e

else:
print e, "is a", t, "expression"
print "\tinfix :", expr.infix()
print "\tprefix :", expr.prefix()

print "\tpostfix :", expr.postfix()

Part 1V

Internal structure of TPG for the
curious

47

Chapter 11

Structure of the package

11.1 General structure of the package
TPG is delivered in a Python package named tpg. It is composed of:

__init__.py turns tpg directory into a package. It defines some data about the current release
(version, author, ...) and it imports in its local namespace the three useful objects compile,
LexerError and ParserError.

base.py defines the base class of the generated parsers and other classes used by these parsers.
It’s a kind of runtime for the parsers.

codegen.py contains the classes used by the parser to represent the AST corresponding to the
parsed grammar. Theses classes have the necessary methods for code generation.

parser.g contains the grammar that recognizes TPG grammars. It defines the syntax of TPG
grammars and builds the AST of the grammar.

parser.py is automatically generated by TPG itself from parser.g.
Release.py contains release data (version, author, ...).

tpg is a wrapper script for TPG. It reads a grammar and produces a Python script.

48

Chapter 12

Lexer

12.1 Token matching

Tokens are defined by their regular expressions (see 6.2). TPG builds a regular expression by
assembling each regular expression in a or structure. For example to recognize int ([0 — 9]+) and
word ([a — zA — Z]4), TPG builds this composite expression: (7P < int > [0 —9]4+) | (7P <
word > [a — zA — Z]+) This expression is then compiled using the re module.

For each token we save its name, its text, its value (i.e. the result of its action applied to its
text), the line number and the position of the start and the end of the token in the input string.

There is a special token named FOF used as the erroneous token when a lexical error appears
near the end of the input.

49

Chapter 13

Parser

13.1 Interface with the lexer

The lexer produces a list of tokens (see 6.3). The parser save the number of the current token.
Each time a token is matched (-eat method), the current token number is incremented. This
counter does not appear in the generated code. It is handled by the _eat method.

13.2 Sequences of subexpressions

There is nothing particular about sequences (see 7.6). A sequence of expressions is translated into
a sequence of Python statements (see 14.3.3).

13.3 Alternatives between subexpressions

Alternatives (see 7.8) are tried in the order of their declaration. The first match will stop the
search. When a branch fails (i.e. a call to the _eat method raises a TPGWrongMatch exception)

the alternative control structure catches the exception and tries the next branch. On the last
branch the exception is not catched in order to be handled by an outer choice point (see 14.3.5).

13.4 Repetitions

Repetitions (see 7.9) use the same scheme as alternatives. The TPGWrongMatch exception stops
the loop when raised (see 14.3.6).

a0

Chapter 14

Code generation

This chapter shows the code generated by TPG. It is not necessary to read it to understand how
TPG works. This chapter has been written mostly the curious readers.

14.1 Inheritance

TPG parsers can inherit from other Python classes (see 7.2). See figure 14.1 for the generated
code.

Figure 14.1: Inheritance example
’ Grammar \ Generated code

parser MyParser(Basel, Base2): class MyParser(tpg.base.ToyParser,Basel,Base2):

ol

52 CHAPTER 14. CODE GENERATION

14.2 Lexer

The figure 14.2 shows token precedence (see 6.2). Tokens are declared in the order of appearance
except from inline tokens that are declared before predefined tokens.

Figure 14.2: Lexer example
’ Grammar \ Generated code

parser Foo: class Foo(tpg.base.ToyParser,):

def _init_scanner(self):
self._lexer = tpg.base. _Scanner (
tpg.base._TokenDef (r"_tok_1", r"\("),
tpg.base._TokenDef (r"_tok_2", r"\)"),

token integer: ’\d+’ int ; tpg.base._TokenDef (r"integer", r"\d+", int, 0),
token arrow: ’->’ ; tpg.base._TokenDef (r"arrow", r"->", None, 0),
separator spaces: ’\s+’ ; tpg.base._TokenDef (r"spaces", r"\s+", None, 1),
)
S -> def S(self,):
"nnog -> °\(’ integer arrow ’\)’ """
AN self._eat(’_tok_1’) # \(
integer self._eat(’integer’)
arrow self._eat(’arrow’)

\)° self._eat(’_tok_2’) # \)

H

14.3. PARSER

14.3 Parser

14.3.1 Grammar rules

Grammar rules (see 7.3) are used to define what a symbol is composed of. A rule is translated into
a method of the parser class (see figure 14.3). The attributes of the symbol are the parameters of

the methods. The docstring of the method is the grammar rule.

Figure 14.3: Rule declaration example

’ Grammar

\ Generated code

parser Foo:

Symboll -> ;

Symbol2<argl, arg2, arg3> -> ;

Symbol3/ret_val -> ;

Symbol4<argl, arg2, arg3>/ret_val -> ;

class Foo(tpg.base.ToyParser,):

def Symboll(self,):
Wi Symboll —> MU

def SymbolQ(self,argi,argQ,argS):
" Symbol2 -> MUn

def Symbol3(self,):
Wi gymbol3 -> Mhw
return ret_val

def Symbol4(self,argl,arg2,arg3):
Wi Symbold —> MU
return ret_val

o4

14.3.2 Symbols

Terminal symbols

Terminal symbols (see 6.2) are recognized by calling the _eat method with the name of the token
to match (see figure 14.4). Terminal symbols can return the token text in a string. If the current
token is not the expected token, _eat raises a TPGWrongMatch exception. This exception will be
catched either by an outer choice point to try another choice or by TPG to turn this exception

into a ParserError exception.

CHAPTER 14. CODE GENERATION

Figure 14.4: Terminal symbol matching example

’ Grammar

\ Generated code

parser Foo:

token predef: ’bar’ ;

’inline’
predef
’inline’/s1
predef/s2

H

class Foo(tpg.base.ToyParser,):

def _init_scanner(self):
self._lexer = tpg.base._Scanner(
tpg.base._TokenDef (r"inline", r"inline"),

def S(self,):
""" § -> ’inline’ predef ’inline’ predef """
self._eat(’inline’)
self._eat(’predef’)
sl = self._eat(’inline’)
s2 = self._eat(’predef’)

Non terminal symbols

Non terminal symbols (see 7.5) are recognized by calling their rules (see figure 14.5). Non terminal

symbols can have attributes, a return value or both.

Figure 14.5: Non terminal symbol matching example

’ Grammar

\ Generated code

parser Foo:
S ->

NTermil

NTerm2<argl, arg2>
NTerm3/ret_val
NTermé4<argl, arg2>/ret_val

H

class Foo(tpg.base.ToyParser,):

def S(self,):
""" S -> NTerml NTerm2 NTerm3 NTerm4 """
self .NTerm1 ()
self .NTerm2(argl,arg2)
ret_val = self.NTerm3()
ret_val = self.NTerm4(argl,arg2)

tpg.base._TokenDef (r"predef", r"bar", None, 0),

14.3. PARSER 55

14.3.3 Sequences

The token number is updated by the _eat method when called so a sequence (see 7.6) in a rule is
translated into a sequence of statements in Python (see figure 14.6).

Figure 14.6: Sequence of expressions example
’ Grammar \ Generated code

parser Foo: class Foo(tpg.base.ToyParser,):

S ->ABC; def S(self,):
"t s ->ABC"""
self.A()
self.B()
self.C()

o6 CHAPTER 14. CODE GENERATION

14.3.4 Cut

The cut mechanism (see 7.7) is implemented as a shortcut to the TPGWrongMatch exception.
When the sequence following a cut fails, i.e. when it raises a TPGWrongMatch exception, TPG
turns this exception into a ParserError exception to immediately abort parsing (see figure 14.7).

Figure 14.7: Cut example

’ Grammar \ Generated code ‘
parser Foo: class Foo(tpg.base.ToyParser,):
S -> def S(self,):

m"en s -> A1 B1 C1 | A2 B2 €2 """
__pl = self._cur_token

try:
Al ! self.A1(Q)
try:
Bl self.B1()
Cc1 self.C1()

except self.TPGWrongMatch, e:
self .ParserError(e.last)
| except self.TPGWrongMatch:

self._cur_token = __pl
A2 ! self.A2()
try:
B2 self.B2()
c2 self.C2()

H except self.TPGWrongMatch, e:
self.ParserError(e.last)

14.3. PARSER 57

14.3.5 Alternatives

Alternatives (see 7.8) are tried in the order they are declared. Before trying the first branch, TPG
saves the current token number. If the first choice fails, the token number is restored before trying
the second branch. When a branch fails, the _eat method raises a TPG WrongMatch exception
which is catched by the alternative structure. This algorithm is very simple to implement but
isn’t very efficient. This is how the computation of any prediction table is avoided.

Figure 14.8: Alternative in expressions example

’ Grammar \ Generated code
parser Foo: class Foo(tpg.base.ToyParser,):
S->A|BI|CI|D; def S(self,):

nenog oy A | B | C I D "nn
__pl = self._cur_token
try:
try:
self.AQ)
except self.TPGWrongMatch:
self._cur_token = __pl
self.B()
except self.TPGWrongMatch:
self._cur_token = __pl
try:
self.C()
except self.TPGWrongMatch:
self._cur_token = __pl
self.D()

o8 CHAPTER 14. CODE GENERATION

14.3.6 Repetitions

Repetitions (see 7.9) are implemented in a similar way to alternatives. The TPG WrongMatch tells
TPG when to go out of the loop. See figures 14.9 and 14.10 for repetition examples.

Figure 14.9: Repetition examples: builtin 7, * and +

’ Grammar \ Generated code
parser Repetitions: class Repetitions(tpg.base.ToyParser,):
ZERO_or_ONE -> def ZERO_or_ONE(self,):

nen ZERO_or_ONE -> A? """
__pl = self._cur_token

try:
A7 self.AQ)
H except self.TPGWrongMatch:
self._cur_token = __pl
ZERO_or_MORE -> def ZERO_or_MORE(self,):

""" ZERO_or_MORE -> Ax """

__pl = self._cur_token

while 1:
try:

A x self.AQ)

H __pl = self._cur_token

except self.TPGWrongMatch:
self._cur_token = __pl
break

ONE_or_MORE -> def ONE_or_MORE(self,):
""" ONE_or_MORE -> A+ """
__pl = self._cur_token
nl =0
while 1:
try:
A+ self.AQ)
; __nl +=1
__pl = self._cur_token
except self.TPGWrongMatch:
if __n1 >= 1:
self._cur_token = __pl
break
else:
self.WrongMatch()

14.3. PARSER

Figure 14.10: Repetition examples: user defined {m,n}

99

Grammar

\ Generated code

parser Repetitions:

USER_DEFINED ->

A{2,5}

H

class Repetitions(tpg.base.ToyParser,):

def USER_DEFINED(self,):
"nn USER_DEFINED -> A{2,5} """
__pl = self._cur_token
_.nl =0
while __ni<5:
try:
self.AQ)
_.nl += 1
__pl = self._cur_token
except self.TPGWrongMatch:
if __n1 >= 2:
self._cur_token = __pl
break
else:
self.WrongMatch()

60 CHAPTER 14. CODE GENERATION

14.3.7 Abstract syntax trees

Abstract syntax trees (see 7.11.1) are simply Python objects. The figure 14.11 shows the instan-
ciation of a node. The figure 14.12 shows the update with the add method.

Figure 14.11: AST instanciation example

’ Grammar \ Generated code
i&t
class Couple: class Couple:
def __init__(self, a, b): def __init__(self, a, b):
self.a = a self.a = a
self.b = b self.b = b
3 class Foo(tpg.base.ToyParser,):
parser Foo:
COUPLE1l/c -> def COUPLE1(self,):
"u" COUPLE1 -> """
c=Couple<a,b> c = Couple(a,b)
H return c
COUPLE2/Couple<a,b> -> def COUPLE2(self,):
"u" COUPLE2 -> """
H return Couple(a,b)

Figure 14.12: AST update example

’ Grammar \ Generated code
&1
class List(list): class List(list):
add = list.append add = list.append
}r class Foo(tpg.base.ToyParser,):
parser Foo:
LIST/1 -> def LIST(self,):
wiw [IST -> ITEM """
1 = List<> 1 = List(Q)
ITEM/a a = self.ITEM()
1l-a 1.add(a)
; return 1

14.3. PARSER 61

14.3.8 Text extraction

Text can be extracted (see 7.11.2) from the input string (including separators). The prefix @
operator puts a mark on the current token. The infix .. operator extracts the text between two
marks.

The figure 14.13 shows how this extraction works.

Figure 14.13: Text extraction

’ Grammar

\ Generated code

parser Foo:

class Foo(tpg.base.ToyParser,):

S -> def S(self,):
"es ->ABC""
A self.AQ)
Qx # put a mark ’x’ x = self._mark()
B self.B()
C self.CO
Qy # put a mark ’y’ y = self._mark()
t =x..y # extract from ’x’ to ’y’ t = self._extract(x,y)

H

14.3.9 Python objects

TPG has an adapted syntax for some Python expressions (see 7.11.3).
The figure 14.14 shows this implementation.

Figure 14.14: Python object in TPG

’ Grammar

\ Generated code

parser Foo:
Bar ->

y
"string"
<y>

<y, z>
{x+y3}}
y.z
y<a,b>
z<>
1st[1]
1st[2:3]
1st[:3]
1st[2:]
1st[:]

I I I I T T A]
L (| (| | | B | B

class Foo(tpg.base.ToyParser,):

def Bar(self,):
"nn Bar -> "
X=y
r"string"
(y,)
(y, z,)
X +y

MoK M MM K MM X M MM
L T | R A T
<
~
»

o
NI

	I Introduction and tutorial
	Introduction
	Introduction
	License
	Structure of the document

	Installation
	Getting TPG
	Requirements
	TPG for Linux and other Unix like
	TPG for M$ Windows
	TPG for other operating systems

	Tutorial
	Introduction
	Defining the grammar
	Reading the input and returning values
	Embeding the parser in a script
	Conclusion

	II TPG reference
	Usage
	Package content
	Command line usage

	Grammar structure
	TPG grammar structure
	Comments
	Options
	Magic option
	CSL options

	Python code
	Syntax
	Indentation

	TPG parsers
	Initialisation
	Rules
	Python code

	Lexer
	Regular expression syntax
	Token definition
	Predefined tokens
	Inline tokens

	Token matching
	Splitting the input string
	Matching tokens in grammar rules

	Parser
	Declaration
	Base classes of TPG parsers
	Default base class
	User defined base classes

	Grammar rules
	Parsing terminal symbols
	Parsing non terminal symbols
	Starting the parser
	In a rule

	Sequences
	Cut
	Alternatives
	Repetitions
	Precedence and grouping
	Actions
	Abstract syntax trees
	Text extraction
	Object
	Actions in Python code

	Context sensitive lexer
	Introduction
	Grammar structure
	CSL lexers
	Regular expression syntax
	Token definition
	Token matching

	CSL parsers

	III Some examples to illustrate TPG
	Complete interactive calculator
	Introduction
	New functions
	Trigonometric and other functions
	Memories

	Source code
	TPG grammar
	Python script

	Infix/Prefix/Postfix notation converter
	Introduction
	Abstract syntax trees
	Grammar
	Infix expressions
	Prefix expressions
	Postfix expressions

	Source code

	IV Internal structure of TPG for the curious
	Structure of the package
	General structure of the package

	Lexer
	Token matching

	Parser
	Interface with the lexer
	Sequences of subexpressions
	Alternatives between subexpressions
	Repetitions

	Code generation
	Inheritance
	Lexer
	Parser
	Grammar rules
	Symbols
	Sequences
	Cut
	Alternatives
	Repetitions
	Abstract syntax trees
	Text extraction
	Python objects

